Continuous Software Engineering and Beyond:
Trends and Challenges

Brian Fitzgerald
Lero—The Irish Software Engineering
Research Centre
University of Limerick, Ireland

bf@ul.ie

ABSTRACT

Throughout its short history, software development has been
characterized by harmful disconnects between important
activities e.g., planning, development and implementation.
The problem is further exacerbated by the episodic and
infrequent performance of activities such as planning, test-
ing, integration and releases. Several emerging phenomena
reflect attempts to address these problems. For example,
the Enterprise Agile concept has emerged as a recognition
that the benefits of agile software development will be sub-
optimal if not complemented by an agile approach in related
organizational function such as finance and HR. Continu-
ous integration is a practice which has emerged to eliminate
discontinuities between development and deployment. In
a similar vein, the recent emphasis on DevOps recognizes
that the integration between software development and its
operational deployment needs to be a continuous one. We
argue a similar continuity is required between business strat-
egy and development, BizDev being the term we coin for
this. These disconnects are even more problematic given
the need for reliability and resilience in the complex and
data-intensive systems being developed today. Drawing on
the lean concept of flow, we identify a number of continuous
activities which are important for software development in
today’s context. These activities include continuous planning,
continuous integration, continuous deployment, continuous
delivery, continuous verification, continuous testing, contin-
uous compliance,continuous security, continuous use, con-
tinuous trust, continuous run-time monitoring, continuous
improvement (both process and product), all underpinned by
continuous innovation. We use the umbrella term, “Continu-
ous *” (continuous star) to identify this family of continuous
activities.

Categories and Subject Descriptors

D.2 [Software Engineering|: Management; K.6.3 [Software
Management]: Software development, Software mainte-
nance, Software process

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

RCoSE ’ 14, June 3, 2014, Hyderabad, India

Copyright 14 ACM 978-1-4503-2856-2/14/06 ...$15.00.

Klaas-Jan Stol
Lero—The Irish Software Engineering
Research Centre
University of Limerick, Ireland

klaas-jan.stol@lero.ie

General Terms

Management, Theory

Keywords

DevOps, BizDev, Continuous Star, continuous software engi-
neering

1. INTRODUCTION

Software development has been characterized by harmful
disconnects between important activities, such as planning,
analysis, design and programming. This is clearly reflected
in the traditional waterfall process for software development
described (and criticized) by Royce [53]. In the last two
decades, there has been a widespread recognition that in-
creasing the frequency of certain critical activities helps to
overcome many challenges. Practices such as ‘release early,
release often’ are well established in open source software de-
velopment [18]. The pervasive adoption of agile methods [61]
provides ample evidence of the need for flexibility and rapid
adaptation in the current software development environment.
Very complex and business- and safety-critical software is
being developed, typically by distributed teams. A tighter
connection between development and execution is required to
ensure errors are detected and fixed as soon as possible. The
quality and resilience of the software is improved as a result.
This is manifest in the increasing adoption of continuous
integration practices. The popularity of continuous inte-
gration is facilitated by the explicit recommendation of the
practice in the Extreme Programming agile method [3], and
indeed the practice is highly compatible with the frequent
iterations of software produced by agile approaches. Also,
many open source toolsets are freely available to automate
the continuous integration process.

However, a number of recent trends illustrate that a more
holistic approach is necessary rather than one which is merely
focused on continuous integration of software. For example,
the Enterprise Agile and Beyond Budgeting [7] concepts have
emerged as a recognition that the benefits of agile software
development will be sub-optimal if not complemented by
an agile approach in related organizational function such
as finance and HR [36, 48]. In a similar vein, the recent
emphasis on DevOps recognizes that the integration between
software development and its operational deployment needs
to be a continuous one [16]. Complementing this, we argue
that the link between business strategy and software devel-
opment ought to be continuously assessed and improved,
BizDev being the term which we have coined for this process.

Similarly, we cannot assume that the process is complete
once customers have initially adopted a software product.
Digital natives, the term for those who have been born in
the technology era [62] have high expectations of software
and are not put off by high switching costs if moving to alter-
natives. Frequently, third-party opinions and word-of-mouth
can cause customers to switch, and software providers must
be more proactive in such a market-place. Also, privacy
and trust issues loom much larger in the data-intensive sys-
tems being used today. Run-time adaptation is increasingly
a factor as software is expected to exhibit some degree of
autonomy to respond to evolving market conditions.

We believe that rather than focusing on agile methods
per se, a useful concept for assessing continuous concepts in
software development comes for the lean approach, namely
that of ‘flow’ [50].

Rather than a sequence of discrete activities, performed
by clearly distinct teams or departments, the argument for
continuous software engineering is to establish a continuous
movement, which we argue closely resembles the concept of
flow found in lean manufacturing and product development,
a school of thought that is called ‘Lean Thinking’ [63]. In
recent years, there has been much interest in lean software
development [13, 17, 21], however, so far there has been a
somewhat narrow view on this topic by closely linking it to
agile practices only.

In this paper we review a number of initiatives that are
termed ‘continuous.” We take a holistic approach and use
the umbrella term ‘Continuous *’ (“Continuous star”) to
refer to these related practices and concepts. The various
developments are by and large at different levels of maturity—
continuous integration is a concept and practice that has
been around for some time, for instance, but continuous
delivery is an idea that has not widely been established. We
argue that these developments have strong links to Lean
Thinking.

This paper proceeds as follows. Section 2 reviews a number
of key concepts from the school of Lean Thinking, of which
the concept of ‘flow’ is the most important as it can be
used as a suitable foundation for the holistic concept of
‘Continuous *’ that we propose in this paper. Section 3
presents the activities which comprise Continuous * in more
detail, and we observe how the various concepts of lean
thinking can be identified within these activities. Section 4
concludes this paper by outlining a number of directions for
future research.

2. LEAN THINKING

The term ‘lean’ was coined by Krafcik [33] to describe the
mode of operation in the Toyota Production System (TPS)
[38]. Numerous books have been published on TPS and ‘lean
manufacturing,” such as ‘Lean Thinking’ [63]. While a full
outline of the lean philosophy is outside the scope of this
paper, we introduce a number of key lean concepts that can
be observed in many distinct software engineering practices.

2.1 Value and Waste

A fundamental focus in lean thinking is that of ‘value,” and
‘reducing waste’ [46, 63]. Any product feature or development
step that does not add value is considered to be waste. One of
the founding fathers of the TPS, Ohno, identified seven types
of waste [46], and others identified a few additional types.
One such waste is overproduction, producing something that

is unwanted, such as unused product features. This type of
waste is common in traditional plan-driven software develop-
ment methods, most notably the waterfall model, whereby
requirements are identified, converted into a design and im-
plemented in a product. However, without any customer
feedback as to whether a feature is needed, there may be
significant waste in product development. Some techniques
adopted in the software industry include the presentation
of mock-interfaces in web-based systems, whereby features
are ‘advertised’ in the interface but not yet implemented.
By monitoring the requests for that feature (i.e., counting
clicks) the interest for that feature can be assessed. One of
the first steps for organizations that wish to reduce waste in
their processes is to conduct a value stream mapping exercise,
whereby the current processes are identified and visualized
so as to be able to gauge where improvements can be made.

2.2 Flow and Batch Size

Flow is another central concept within Lean Thinking
[63]. Flow can be contrasted with ‘batch-and-queue’ think-
ing, whereby actions are done on batches of products, after
which they are queued for the next processing step. Instead,
flow refers to a connected set of value-creating actions—once
a product feature is identified, it is immediately designed,
implemented, integrated, tested, and deployed. Establishing
a continuous flow thus not only refers to a software devel-
opment function in isolation, but should be leveraged as an
end-to-end concept that considers other functions within an
organization such as planning, deployment, maintenance and
operation.

Many traditional software development environments are
still operating according to the principles of batch-and-queue.
While the software development function might be flowing to
some degree, the planning and deployment of features is still
done in batches, and not in a continuous flowing movement.
Increasingly, the software industry is adopting kanban as
an alternative approach for scheduling work, or as a source
to augment the longer established Scrum methodology [21].
Kanban can help to level the daily workload, a concept known
in lean thinking as heijunka [38].

2.3 Autonomation and Building-in Quality

A third key concept found within TPS and lean thinking is
autonomation, or “automation with a human touch” [46, p.6].
Another term used for this is jidoka, or built-in quality. This
refers to tools and visual aids in closely monitoring quality
during the production process. For instance, an andon is a
line stop indication board, which indicates the location and
nature of troublesome situations at a glance [46, p.21]. This
can also be observed in software development; for instance,
many organizations that follow an agile approach have an
indicator, sometimes an actual traffic light, that springs to
red as soon as the build is ‘broken.” Tools such as Tinderbox!
provide a visual interface that can link specific code changes
to build failures.

Another related terms is Poka Yoke which has been de-
fined as consisting of checklists, test plans, quality matrices,
standard architecture, shared components, and standardized
manufacturing processes [42, p.95]. Poka Yoke, or Baka-Yoke
are fool proofing mechanisms to help eliminate mistakes, and
assist an engineer in identifying problems as soon as possible.

"http://en.wikipedia.org/wiki/Tinderbox_(software)

2.4 Kaizen and Continuous Improvement

Adopting ‘lean thinking’ is a continuous process of improve-
ment. Improvement can take place through radical steps
(kaikaku) in the beginning of a transformation initiative, fol-
lowed by incremental improvements (kaizen). For instance,
the decision to adopt an agile method such as Scrum in
favor of traditional, so-called plan-driven methods (waterfall,
V-model) is an instance of ‘kaikaku,” whereas review and
retrospective meetings at the end of a sprint are forms of
‘kaizen.’

Research on improving agile methods has tended to focus
on the software development function within organizations.
However, very little attention has been paid to the interaction
with—and improvement of —functions such as planning, de-
ployment, operations and maintenance. This could partially
explain the barriers that organizations encounter in further
improving their software development activities, as they en-
counter tension points with those parts of the organization
that are not considered in a holistic manner.

3. CONTINUOUS *

As already mentioned, we view Continuous * as a holistic
endeavor. We consider the entire software life-cycle, within
which we identify three main sub-phases: Business Strategy
& Planning, Development, and Operations. Within these
sub-phases, we position the various categories of continuous
activities (see Table 1).

3.1 Business Strategy & Planning

Historically, a gulf has emerged between business strategy
and IT development, with IT departments being viewed as
a necessary evil rather than a strategic partner [8]. We
argue that a closer and continuous linkage between business
and software development functions is important, and term
this BizDev, a phenomenon which complements the DevOps
one of integrating more closely the software development
and operations functions [16]. Continuous planning would
certainly facilitate BizDev as it requires tighter connection
between planning and execution.

3.1.1 Continuous Planning

In the context of software development, planning tends be
episodic and performed according a traditional cycle usually
triggered by annual financial year-end considerations, for
example. This traditional planning model is effectively a
batch formulation of the problem [32]. When addressing an
ongoing planning problem, time is divided into a number of
planning horizons, each lasting a significant period of time.
The only form of continuous planning is that which emerges
from agile development approaches and is related to sprint
iterations or at best, software releases, and is not widespread
throughout the organization. However, just as agile seeks to
enable software development to cope with frequent changes
in the business environment, the nature of the business envi-
ronment also requires that planning activities be done more
frequently to ensure alignment between the needs of the
business context and software development [37], and also
requires a tight integration between planning and execution
[32]. Given the ongoing interest in autonomous systems, it
is also interesting that Knight et al. [32] identify continuous
planning as a key prerequisite for delivering autonomous
systems.

In the traditional planning model, a failure in the plan may
require another cycle of planning activity before it is resolved,
but the typical cadence of annual once-per-year planning is
certainly not adequate. Continuous planning may be defined
as a holistic endeavor involving multiple stakeholders from
business and software functions whereby plans are dynamic
open-ended artifacts that evolve in response to changes in the
business environment, and thus involve a tighter integration
between planning and execution. In addition to iteration and
release planning, product and portfolio planning activities
would also be conducted [54].

3.2 Development

The Development phase, in our conception, comprises
the main software development activities of analysis, design,
coding and verification/testing. The following Continuous *
activities are considered in this phase: continuous integration
(incorporating continuous deployment/release, continuous de-
livery, continuous verification/testing). In recognition of the
increasing focus on security and regulatory compliance, we
also consider continuous compliance and continuous security
activities in this phase.

3.2.1 Continuous Integration and Related
Constituent Activities

Continuous integration is the best known of the Contin-
uous * family. This is clearly helped by the fact that con-
tinuous integration is an explicit practice identified in the
very popular Extreme Programming (XP) method. One
consequence of this popularity however, is that there is con-
siderable variability in how the topic is defined and in what
activities are considered to be part of continuous integration
[57]. However, at heart, continuous integration may be de-
fined as a process which is typically automatically triggered
and comprises inter-connected steps such as compiling code,
running unit and acceptance tests, validating code coverage,
checking compliance with coding standards, and building
deployment packages. While some form of automation is
typical, the frequency of integration is also important in that
it should be regular enough to ensure quick feedback to devel-
opers. Finally, continuous integration failures are important
events which may have a number of ceremonies and highly
visible artifacts to help ensure that problems leading to these
failures are prioritized for solution as quickly as possible by
whoever is deemed responsible.

Continuous integration has increased in importance due to
the benefits that have been associated with it [57]. These ben-
efits include improved release frequency and predictability,
increased developer productivity, and improved communica-
tion.

Continuous integration requires a link between develop-
ment and operations and is thus very relevant to the DevOps
phenomenon [16]. Within continuous integration, a number
of further modes of continuous activities can be identified,
namely continuous deployment and continuous delivery [28,
35]. These concepts are related in that continuous deployment
is a prerequisite for continuous delivery, but the reverse is not
necessarily the case. That is, continuous delivery refers to re-
leasing valid software builds to users automatically, whereas
continuous deployment refers to the practice of deploying
the software to some environment, but not automatically
delivering to customers.

Continuous delivery has been defined as the ability to

Table 1: Continuous * Activities and Definitions

Activity

Description & References

Business Strategy and Planning

Continuous
Planning

Holistic endeavor involving multiple stakeholders from business and software functions whereby plans
are dynamic open-ended artifacts that evolve in response to changes in the business environment, and
thus involve a tighter integration between planning and execution (see Knight et al. [32], Myers [44];
Lehtola et al. [37])

Development

Continuous
Integration

Continuous
Deployment

Continuous
Delivery

Continuous
Verification

Continuous
Testing

Continuous
Compliance

Continuous
Security

A typically automatically triggered process comprising inter-connected steps such as compiling code,
running unit and acceptance tests, validating code coverage, checking coding standard compliance and
building deployment packages. While some form of automation is typical, the frequency is also important
in that it should be regular enough to ensure quick feedback to developers. Finally, any continuous
integration failure is also an important event which may have a number of ceremonies and highly visible
artefacts to help ensure that problems leading to integration failures are solved as quickly as possible by
those responsible. (see Kim et al. [31]; Rogers [52]; Stahl & Bosch [57]; Stolberg [56])

Continuous deployment is the practice of continuously deploying good software builds automatically to
some environment, but not necessarily to actual users (See Fitz [19], Holmstrém et al. [27], Humble &
Farley [29], Lacoste [35])

Continuous delivery implies continuous deployment and is the practice of ensuring that the software is
continuously ready for release and deployed to actual customers (see Neely & Stott [45])

Adoption of verification activities including formal methods and inspections throughout the development
process rather than relying on a testing phase towards the end of development. (see Chang et al. [9];
Cordeiro et al. [14])

A process typically involving some automation of the testing process, or prioritisation of test cases, to
help reduce the time between the introduction of errors and their detection, with the aim of eliminating
root causes more effectively. (see Bernhart et al. [4]; Marijan et al. [39]; Muslu et al. [43]; Saff & Ernst
[55]).

Software development seeks to satisfy regulatory compliance standards on a continuous basis, rather
than operating a ‘big-bang’ approach to ensuring compliance just prior to release of the overall product.
(see Fitzgerald et al. [22]; McHugh et al. [40]).

Transforming security from being treated as just another non-functional requirement to a key concern
throughout all phases of the development lifecycle and even post deployment, supported by a smart and
lightweight approach to identifying security vulnerabilities. (see Merkow & Raghavan [41]).

Operations

Continuous
Use

Continuous
Trust

Continuous
Run-Time
Monitoring

Recognizes that the initial adoption versus continuous use of software decisions are based on different
parameters, and that customer retention can be a more effective strategy than trying to attract new
customers. (see Bhattacherjee [5]; Gebauer et al. [24]; Ortiz & Markus [47]).

Trust developed over time as a result of interactions based on the belief that a vendor will act cooperatively
to fulfil customer expectations without exploiting their vulnerabilities. (see Gefen et al. [25]; Hoehle et
al. [26]; Zhou [64]).

As the historical boundary between design-time and run-time research in software engineering is blurring
[2], in the context of continuously running cloud services, run-time behaviours of all kinds must be
monitored to enable early detection of quality-of-service problems, such as performance degradation,
and also the fulfilment of service level agreements (SLAs). (see Van Hoorn et al. [59]).

Improvement and Innovation

Continuous
Improvement

Continuous
Innovation

Based on lean principles of data-driven decision-making and elimination of waste, which lead to small
incremental quality improvements that can have dramatic benefits and are hard for competitors to
emulate. (see Chen et al. [10], Fowler [23], Jarvinen et al. [30], Krasner [34]).

A sustainable process that is responsive to evolving market conditions and based on appropriate
metrics across the entire lifecycle of planning, development and run-time operations. (see Cole [12];
Holmstrém-Olsson et al. [27], Ries [51])

Business Strategy

! i BizDev

Development

&

Operations

DevOps > “

4

Continuous Integration

J,

)

Contmions I Continuous Deployment I
Planning I Continuous Delivery I Confinuous Trust
I Continuous Verification/Testing I
Continuous Run-Time
I Continuous Security I Monitoring
I Continuous Compliance I
I Continuous Improvement I
_ Continuous Innovation)

Figure 1: Continuous *: A holistic view on activities from Business, Development, Operations and Innovation.

release software whenever an organization wants [45]. In
actual practice, this means that new features are deployed
into production code as soon as they are finished. This ability
and practice to release frequently has long been recognized
in open source software communities, where “release early,
release often” is a common practice.

Neely and Stolt [45] describe the experience of an organiza-
tion that adopted continuous delivery. The organization im-
plemented a number of lean principles, such as implementing
a Kanban system (migrating from Scrum), documenting their
development process (value stream mapping), and automa-
tion whenever possible. The transformation of continuous
delivery cannot be limited to the software development team,
but should also consider other functions, in particular Sales
and Marketing. This suggests that an end-to-end considera-
tion of the software development lifecycle is important, which
is also a characteristic of Lean Thinking. Neely and Stolt also
reported that continuous monitoring (through tests, gates
and checks) is important — in lean vocabulary this is better
known as Poka Yoke — and the organization used a number
of tools to monitor the state of the system.

By changing from time-based releases (e.g., Sprint-based)
to continuous delivery of software, the number of reported
defects (e.g. by customers) is likely to level out—the leveling
of a workload (i.e., the need to fix defects) is referred to as
‘heijunka’ in Lean Thinking [63].

3.2.2 Continuous Verification/Continuous Testing

Given the extent to which various forms of testing are a key
component of continuous integration, the topics of continuous
verification and continuous testing are also included here.

The traditional waterfall approach leads to a tendency to
consider verification and quality as separate activities, to
be considered only after requirements, design and coding
are completed [9]. Agile and iterative approaches have in-
troduced prototyping which is used for earlier verification
of requirements. Continuous verification seeks to employ
verification activities including formal methods and inspec-

tion throughout the development process rather than relying
on a testing phase towards the end of development. Chang
et al. [9] presented a case study of the development of a
mission-critical weapons system that followed a waterfall
lifecycle augmented with the concept of ‘continuous verifica-
tion.” Each phase (requirements analysis, high level design,
detailed design, code, unit testing, integration testing) was
augmented by adding an inspection or verification phase that
could include prototyping. Chang et al. reported that only
3.8% of the total development time was needed for testing
phases, which they attributed to the additional time spent
on inspection and verification activities that represented 21%
of the total time. While verification activities took a signifi-
cant amount of time, they were found to be very effective in
achieving quality.

Inspections based on pre-defined checklists were found to
be more effective than without a checklist. This is clearly
a form of task standardization, which is a key principle
in Lean Thinking. Chang et al. found that no significant
tool support was required to support continuous verification,
which could be an impediment to adopting this activity in
some organizations.

Continuous testing seeks to integrate testing activities
as closely as possible with coding. Similar to continuous
integration, there are potential benefits to this [43]. Firstly,
errors can be fixed quickly while the context is fresh in the
developers’ minds and before these errors lead to knock-on
problems. Also, the underlying root causes that led to the
problems may be identified an eliminated. Furthermore, there
is usually some level of automation of the testing process and
a prioritization of test cases [39]. Saff and Ernst introduced
the concept of ‘continuous testing’ [55], and argued that
continuous testing can result in wasted development time.
Their experiment showed that continuous testing can help to
reduce overall development time by as much as 15%. This
suggests that continuous testing can be an effective tool to
reduce one of the types of wastes, namely that of waiting
time.

3.2.3 Continuous Compliance and Continuous
Security

Agile methods were initially seen as suited to small projects
with co-located developers in non-safety critical contexts [1,
6]. However over the past decade or so agile methods have
been successfully applied on large projects with distributed
developers [20], and in recent times, the final frontier, that
of applying agile methods on safety critical systems is being
addressed. Fitzgerald et al. [22] discuss the tailoring of
the Scrum method for a regulated environment, R-Scrum
as it is termed. In keeping with the move from a waterfall
approach to an agile approach comprising three-week sprints
(a radical transformation, or kaikaku), a mode of continuous
compliance was achieved. That is, rather than compliance
being ensured on an annual basis in a single frenetic activity,
new ceremonies, roles and artifacts were added to R-Scrum
to allow compliance to be assessed at the end of each sprint.
Non-conformance issues were fed back to sprint planning
after each sprint, and this led to very efficient organizational
learning whereby non-conformance issues tended not to reap-
pear. As a result, the compliance assurance at final release
time was more of a formality given that the issues had been
ironed out during the various sprints.

Continuous security seeks to prioritize security as a key con-
cern throughout all phases of the development lifecycle and
even post deployment [41]. As a non-functional requirement,
security is often relegated to a lower priority even uninten-
tionally. Continuous security also seeks to implement a smart
and lightweight approach to identifying vulnerabilities.

3.3 Operations

3.3.1 Continuous Use

While much emphasis has been placed on the initial adop-
tion of software systems, much less attention has been de-
voted to the continuing use of these systems [24]. However
the latter is necessary given that the economic payoff from
systems comes from continued use rather than initial adop-
tion [5].

Gebauer et al. [24] point out that the models which are
used to study initial adoption (e.g. TAM [15] and UTAUT
[60]) are not necessarily suited to study continuous use as they
do not consider variables such as automatic and unconscious
or habitual characteristics, which have been found to be
important in actual continuous use [47]. Also, the theoretical
concepts underpinning these models were derived in an era
where the consumers of technology were digital immigrants
rather than digital natives who have known technology all
their lives [62]. The latter are motivated very differently and
have different attitudes to software use.

A final shortcoming is that many studies consider intention
to continue using a system rather than the actual continuous
use. The latter requires longitudinal studies and ideally
objective self-reporting measures which are inevitable when
personal intention is being assessed. The trend towards rapid
experimentation and split A/B testing with users to assess
acceptance of various feature sets is also relevant to the
continuous use category.

3.3.2 Continuous Trust

Drawing on Hoehle et al. [26] and Pavlou & Fygenson [49],
we define continuous trust as trust developed over time as a
result of interactions based on the belief that a vendor will

act cooperatively to fulfill customer expectations without
exploiting their vulnerabilities. Continuous use is strongly
dependent on continuous trust. Also, it just as the initial
adoption scenario is quite different to continuous use, the
relationship between initial trust and continuous trust is a
complex one. Hoehle et al. [26] suggest that initial trust is
more important in circumstances that occur in a single trans-
action, such as buying a car. However, in contexts where
activities are transacted over an extended period of time
with remote providers, such as cloud services, for example,
continuous trust is critical. Continuous trust evolves over
time and even if initially high, it is constantly being recal-
culated by users, and can be eroded due to user experience
e.g., with security or privacy concerns. Interestingly, even
if nothing changes in a software product or service, trust
can be eroded solely by changes in the external environment,
e.g., by media reports on security or privacy vulnerabilities.
Given the extent to which continuous use is dependent on
continuous trust, ensuring the latter is clearly critical.

3.3.3 Continuous Run-Time Monitoring

The historical boundary between design-time and run-time
research in software engineering is blurring due to increased
dynamic adaptation at run-time [2]. This is especially sig-
nificant in the context of cloud services which involve con-
tinuously running software services. Runtime behaviors of
all kinds, including adaptations, must be predictable and
bounded to ensure safety properties are satisfied and end-
user expectations are met, hence linking to continuous secure.
Van Hoorn et al. [59] suggest continuous monitoring may
enable early detection of quality-of-service problems, such as
performance degradation, and also the fulfillment of service
level agreements (SLAS).

3.4 Continuous Improvement and Continuous
Innovation

Continuous improvement, or Kaizen, is a key tenet of Lean
Thinking. In software development terms, continuous prod-
uct improvement manifests itself in the refactoring concept,
a key practice in Extreme Programming [23]. Continuous
process improvement has also been a prominent theme in the
software arena [10, 30, 34]. These initiatives are important
contributors to software quality and are very much based on
the lean principles of using data to drive decision-making and
eliminate waste. While continuous improvement initiatives
are typically incremental and may appear small, Tushman
et al. [58] argue that continuous improvement leverages or-
ganizational tacit knowledge and is thus difficult for other
organizations to easily emulate. However, continuous im-
provement activities are essentially reactive initiatives and
eventually are limited in the extent to which they can add
customer value. Hence, there has been a move to place
greater emphasis on innovation as a more proactive strategy.

Innovation in a business context refers to the process
whereby new ideas are transformed to create business value
for customers, i.e. invention plus exploitation. Innovation
has been one of the most widely used buzzwords in recent
times, especially in the context of open innovation [11]. Also,
the theme of continuous innovation has emerged, most no-
tably in the software domain in the concept of the Lean
Start-Up [51]. An early activity in the continuous innovation
space was that of beta testing, which became a widespread
practice in the software industry, where it was used to elicit

early customer feedback prior to formal release of software
products [12]. The concept has matured considerably over
the years, and now techniques such as A/B testing are widely
used where features such as text, layouts, images and col-
ors are manipulated systematically and customer reaction
is monitored [27]. This can be an effective way to identify
value-adding features.

Interestingly, planning has been identified as a prerequisite
for continuous innovation, in that inadequate planning and
strategic alignment at the front-end of the development pro-
cess is a major cause of failure for consumer products compa-
nies. Continuous innovation seeks to establish a sustainable
process that is responsive to evolving market conditions and
based on appropriate metrics across the entire lifecycle of
planning, development and run-time operations.

While some have seen continuous improvement and inno-
vation as incompatible, it has been argued that continuous
improvement can be a useful base upon which to achieve
continuous innovation [12]. As a consequence, we position
continuous innovation and continuous improvement as the
foundation upon which the other Continuous * activities can
be grounded (See Figure 1).

4. DISCUSSION AND CONCLUSION

Delivering the Continuous * agenda highlights a number
of significant challenges which need to be overcome if the
concept is to be successful. This work attempts to provide
a roadmap of the overall territory, an important step in
its own right, since there is much confusion as terms are
used interchangeably and synonymously without rigorous
definition, similar to early research on agile methods [13].
The need for the Continuous * concept is evident when one
considers the emergence of phenomena such as Enterprise
Agile, Beyond Budgeting, DevOps, Lean Start-Ups and many
other concepts from Lean Thinking in general. These are
all symptomatic of the need for a holistic and integrated
approach across all the activities that comprise software
development.

Among the main contributions of this work are the follow-

ing:
e Recognition of the need for tighter connection between

the various phases of business strategy, development
and execution.

e More specifically, the identification of BizDev to repre-
sent the need for tighter integration between business
strategy and software development, a complement to
the DevOps concept.

e The need to go beyond episodic planning based on
a traditional annual financial model to one more in
keeping with market needs.

e Recognition that initial adoption of technology is driven
by very different factors to those which determine con-
tinued use.

e The interconnection between the various continuous
activities. For example, to deliver on rapid experimen-
tation and Split A/B testing, required for continuous
innovation, there is a need for precise build informa-
tion to identify exactly which features are included in
different builds which facilitate A/B testing in the first
place.

e While some tool support is available for certain sub-sets
of Continuous *, appropriate tool support is needed for
the overall concept. For instance, rapid deployment of
different versions of a software product and managing
the resulting data that supports decision-making in
pursuing certain business opportunities could greatly
benefit from dedicated tool support. This area has
received very little attention so far.

5. ACKNOWLEDGMENTS

This work was supported, in part, by Science Founda-
tion Ireland grant 10/CE/I1855 to Lero—the Irish Software
Engineering Research Centre (www.lero.ie).

6. REFERENCES

[1] S. Ambler. When does(n’t) agile modeling make sense,
2001.
www.agilemodeling.com/essays/whenDoesAMWork.htm.

[2] L. Baresi and C. Carlo Ghezzi. The disappearing
boundary between development-time and run-time. In
Future of Software Engineering Research, 2010.

[3] K. Beck. Eztreme Programming Ezplained: Embrace
Change. Addison-Wesley, 2000.

[4] M. Bernhart, S. Strobl, A. Mauczka, and T. Grechenig.
Applying continuous code reviews in airport operations
software. In 12th International Conference on Quality
Software, pages 214-219, 2012.

[5] A. Bhattacherjee. Understanding information systems
continuance: An expectation-confirmation model. MIS
Quarterly, 25(3):351-370, 2001.

[6] B. Boehm. Get ready for agile methods, with care.
IEEE Computer, 35:64—69, 2002.

[7] B. Bogsnes. Implementing Beyond Budgeting:
Unlocking the Performance Potential. Wiley, 2008.

[8] CA Technologies. The innovation imperative: Why it
needs to lead now, 2012.
www.ca.com/us/ /media/Files/Presentations/the-
innovation-imperative-external-presentation-final.pdf.

[9] T.-F. Chang, A. Danylyzsn, S. Norimatsu, J. Rivera,
D. Shepard, A. Lattanze, and J. Tomayko. “continuous
verification” in mission critical software development.
In 30th Hawaii International Conference on System
Sciences, volume 5, pages 273-284, 1997.

[10] X. Chen, P. Sorenson, and J. Willson. Continuous SPA:
Continuous assessing and monitoring software process.
In IEEE Congress on Services (SERVICES), 2007.

[11] H. Chesbrough. Open Innovation: The New Imperative
for creating and Profiting from Technology. Harvard
Business School Press, 2003.

[12] R. Cole. From continuous improvement to continuous
innovation. Quality Management Journal, 8(4), 2001.

[13] K. Conboy and B. Fitzgerald. Towards a conceptual
framework of agile methods. In XP and Agile
Conference, 2004.

[14] L. Cordeiro, B. Fischer, and J. Marques-Silva.
Continuous verification of large embedded software
using smt-based bounded model checking. In 17th
IEEE International Conference and Workshops on
Engineering of Computer-Based Systems, 2010.

[15] F. Davis, R. Bagozzi, and P. Warshaw. User acceptance
of computer technology: A comparison of two

theoretical models. Management Science,
35(8):982-1003, 1989.

P. Debois. Devops days ghent, 2009.
http://www.devopsdays.org/events/2009-ghent /.

C. Ebert, P. Abrahamsson, and N. Oza. Lean software
development. IEEE Software, 29(5):22-25, 2012.

J. Feller, B. Fitzgerald, S. Hissam, and K. Lakhani.
Perspectives on Free and Open Source Software. MIT
Press, 2005.

T. Fitz. Continuous deployment at IMVU: Doing the
impossible fifty times a day, 2009.
http://timothyfitz.com/2009/02/10/continuous-
deployment-atimvu-doing-the-impossible-fifty-times-a-
day/.

B. Fitzgerald, G. Hartnett, and K. Conboy.
Customising agile methods to software practices at
Intel Shannon. Furopean Journal of Information
Systems, 15(2):197-210, 2006.

B. Fitzgerald, M. Musial, and K. Stol. Evidence-based
decision making in lean software project management.
In 86th International Conference on Software
Engineering (ICSE-SEIP), 2014.

B. Fitzgerald, K. Stol, R. O’Sullivan, and D. O’Brien.
Scaling agile methods to regulated environments: An
industry case study. In 35th International Conference
on Software Engineering (ICSE-SEIP), 2013.

M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 1999.

L. Gebauer, M. Sollner, and J. Leimeister. Towards
understanding the formation of continuous it use. In
84th Int’l Conf. Information Systems, 2013.

D. Gefen, E. Karahanna, and D. Straub. Trust and tam
in online shopping: An integrated model. MIS
Quarterly, 27(1):51-90, 2003.

H. Hoehle, S. Huff, and S. Goode. The role of
continuous trust in information systems continuance.

Journal of Computer Information Systems, 52(4), 2012.

H. Holmstrém Olsson, H. Alahyari, and J. Bosch.
Climbing the “stairway to heaven”: A multiple-case
study exploring barriers in the transition from agile
development towards continuous deployment of
software. In 88th Furomicro Conference on Software
Engineering and Advanced Applications, 2012.

J. Humble. Continuous delivery vs continuous
deployment, 2010.
http://continuousdelivery.com/2010/08/continuous-
delivery-vs-continuous-deployment /.

J. Humble and D. Farley. Continuous Delivery: Reliable
Software Releases through Build, Test, and Deployment
Automation. Addison-Wesley, 2010.

J. Jarvinen, D. Hamann, and R. van Solingen. On
integrating assessment and measurement: Towards

continuous assessment of software engineering processes.
In 6th International Software Metrics Symposium, 1999.

S. Kim, S. Park, J. Yun, and Y. Lee. Automated
continuous integration of component- based software:
an industrial experience. In ASE, 2008.

R. Knight, G. Rabideau, S. Chien, B. Engelhardt, and
R. Sherwood. Casper: Space exploration through
continuous planning. Intelligent Systems, 16(5), 2001.

[33] J. Krafcik. Triumph of the lean production system.

1988.

H. Krasner. The ASPIRE approach to continuous
software process improvement. In 2nd International
Conference on Systems Integration, 1992.

F. Lacoste. Killing the gatekeeper. In Agile Conf., 2009.
D. Leffingwell. Scaling software agility: best practices
for large enterprises. Addison-Wesley, 2007.

L. Lehtola, M. Kauppinen, J. Vahéniitty, and

M. Komssi. Linking business and requirements
engineering: is solution planning a missing activity in
software product companies? Requirements
Engineering, 14(2):113-128, 2009.

J. K. Liker. The Toyota Way. McGraw Hill, 2004.

D. Marijan, A. Gotlieb, and S. Sen. Test case
prioritization for continuous regression testing: An
industrial case study. In IEEE International Conference
on Software Maintenance, 2013.

M. McHugh, F. Mc Caffery, B. Fitzgerald, K. Stol,

V. Casey, and G. Coady. Balancing agility and
discipline in a medical device software organization. In
18th International SPICE Conference, 2013.

M. Merkow and L. Raghavan. An ecosystem for
continuously secure application software. CrossTalk,
March/April, 2011.

J. Morgan and J. Liker. The Toyota Product
Development System. Productivity Press, 2006.

K. Muslu, Y. Brun, and A. Meliou. Data debugging
with continuous testing. In ESEC/FSE, 2013.

K. Myers. CPEF: A continuous planning and execution
framework. AI Magazine, 20(4):63-69, 1999.

S. Neely and S. Stolt. Continuous delivery? easy! just
change everything (well, maybe it is not that easy). In
Agile Conference, 2013.

T. Ohno. Toyota Production System: Beyond
Large-Scale Production. CRC Press, 1988.

A. Ortiz de Guinea and M. Markus. Why break the
habit of a lifetime? rethinking the roles of intention,
habit, and emotion in continuing information
technology use. MIS Quarterly, 33(3):433-444, 20009.
E. Overby, A. Bharadwaj, and V. Sambamurthy. A
framework for enterprise agility and the enabling role of
digital options, business agility and information
technology diffusion. In Business Agility and
Information Technology Diffusion, 2005.

P. Pavlou and M. Fygenson. Understanding and
predicting electronic commerce adoption: An extension
of the theory of planned behavior. MIS Quarterly,
30(1):115-143, 2006.

D. G. Reinertsen. The Principles of Product
Development Flow. Celeritas Publishing, 2009.

E. Ries. The Lean Startup: How Today’s Entrepreneurs
Use Continuous Innovation to Create Radically
Successful Businesses. Crown Business, 2011.

R. Rogers. Scaling continuous integration. In Eztreme
Programming and Agile Processes in Software
Engineering. Springer, 2004.

W. W. Royce. Managing the development of large
software systems. In 9th international conference on
Software Engineering, pages 328-338, 1987.

G. Ruhe. Product Release Planning: Methods, Tools
and Applications. CRC Press, 2010.

[55]

[59]

D. Saff and M. D. Ernst. Reducing wasted development
time via continuous testing. In 14th International
Symposium on Software Reliability Engineering, 2003.
S. Stolberg. Enabling agile testing through continuous
integration. In Agile Conference, 2009.

D. Stahl and J. Bosch. Modeling continuous integration
practice differences in industry software development.
The Journal of Systems and Software, 87, 2013.

M. Tushman, P. Anderson, and C. O’Reilly. Technology
cycles, innovation streams, and ambidextrous
organizations: Organizational renewal through
innovation streams and strategic change. In In
Managing strategic innovation and change. Oxford
University Press, 1997.

A. van Hoorn, M. Rohr, W. Hasselbring, J. Waller,

J. Ehlers, S. Frey, and D. Kieselhorst. Continuous
monitoring of software services: Design and application
of the kieker framework, 2009.

[60]

(61]

(62]

(63]

[64]

V. Venkatesh, M. Morris, G. Davis, and F. Davis. User
acceptance of information technology: Toward a unified
view. MIS Quarterly, 27(3):425-478, 2003.
VersionOne. 7th annual state of agile survey: The state
of agile development, 2012.

S. Vodanovich, D. Sundaram, and M. Myers. Digital
natives and ubiquitous information systems.
Information Systems Research, 21(4):711-723, 2010.

J. Womack and D. T. Jones. Lean Thinking: Banish
Waste and Create Wealth in Your Corporation.
Productivity Press, 2003.

T. Zhou. An empirical examination of continuance
intention of mobile payment services. Decision Support
Systems, 54(2):1085-1091, 2013.

